Using Magnetism and Magnetic Particles to Remediate Wastewater and Leachates

Paulo A Augusto¹, Teresa Castelo-Grande², Javer Rico¹, Roberto Iglesias¹, Jorge Marcos¹, Leticia Merchán¹, Lorenzo Hernández¹, Domingos Barbosa², Angel M Estevez¹

¹(APLICAMA Research Group, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos 1-5, 37008 Salamanca, SPAIN pauloaugusto@usal.es)
²(LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, PORTUGAL)

1. Introduction – The treatment of leachates as pollutant concentrated wastewaters, is still an open issue, and although several different methods are applied for this goal, we are still far away from obtaining low cost and at the same time efficient processes. Even for wastewater and water, removal of specific contaminants is far from being economical. Magnetic particles (nano or micron-sized), namely those based on iron oxides, have shown good sorption capabilities, which may be useful for removal/concentration of pollutants/nutrients. Joining this sorption capabilities with their magnetic properties, and with potential functionalization, makes the application of these particles for wastewater or leachate treatment very interesting, especially as we may use magnetic Figure 1. Treatment results separation methods to further remove, recover and reuse these particles.

2. Experimental - In this work we have tested three different kind of magnetic particles, in order to remove/concentrate organic matter (DQO reduction), Nitrogen (Total Nitrogen) and Phosphorous (Total Phosphorous), during several time periods, being successful in removing between 4 and 65 % of them, depending on the controlled parameter, sorption time and type of particle. We have applied the same particles in three different water streams with different degrees of pollution, so we would be able to analyze the pollutant concentration influence: these being water, wastewater and leachate.

3. Results and Discussion - In Figure 1 we present as example the case of removal for wastewater resultant from sludge centrifugation, by one of the three different magnetic particle systems we have used.

4. Conclusions - Efficient removal of contaminants/nutrients from water have been achieved from real wastewaters and leachates. Particles used in the sorption/Fenton process were able to be recovered and regenerated for further re-use.

Acknowledgements

This work was the result of the project:
(i) MAT2016-76824-C3-2-R, Ministério de Economia y Competitividad (España)
(ii) POCI-01-0145-FEDER-006939 (Laboratory for Process Engineering, Environment, Biotechnology and Energy – UID/EQU/00511/2013) funded by the European Regional Development Fund (ERDF), through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) and by national funds, through FCT - Fundação para a Ciência e a Tecnologia.
(iii) NORTE-01-0145-FEDER-000005 – LEPABE-2-ECO-INNOVATION, supported by North Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).